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ABSTRACT

Polygonal models in 3D, generated from
2D sectional imagery, are more flexible than
volume visualizations, since as vector objects
they can be flexibly scaled and manipulated.  We
discuss a semi-automated system which we have
been evolving, in which a trained anatomist
traces the detailed outline of a structure on a
series of images, and from that series of contours
a 3D polygonal model is created.  To make best
use of the expert, the system can learn the
characteristics of their tracing from exemplars,
and automatically trace ahead to ease and speed
their task.
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1. BACKGROUND
There are two distinctly different

approaches to creating 3D models from 2D
sectional imagery: volume visualizations vs.
polygonal modeling.  In a volume
visualization, the sequence of 2D images are
stacked on top of one another and a 3D
matrix of voxels is created.  Standard 2D
image processing functions, generalized to
3D, can then be used to isolate and display
structures in the volume.  For example,
bone is easily isolated in CT imagery by

thresholding the image between certain
values – the resulting structure can then be
rotated in space for different perspective
views.  In the polygonal modeling
approach, as seen in Figure 1, outlines of a
structure of interest are defined on each
image plane, and then these outlines are
stacked (rather than the images) and
triangles drawn between the outlines to
create a polygonal mesh.  Standard
techniques from computer graphics can
then be used to render the mesh, giving it a
solid surface appearance, with various
lighting conditions specified.

Tools  can generate volume
visualizations reasonably quickly,  once the
voxels of interest have somehow been

Figure 1: a triangulated mesh



specified.  However, it is difficult to
separate structures in areas of low contrast,
or in areas where the boundaries between
structures are indistinct (for example, in
separating one specific muscle from a larger
muscle mass).  Polygonal models, also
called surface models, will be more difficult
to construct initially, since the structure
must be identified and outlined on each of
the 2D images.  However they bring with
them significant advantages:

•  They are usually a more
compact representation of the
structure.

•  The surface can be easily
manipulated (smoothly resized,
deformed, etc.).

•  They can be directly
imported into CAD programs, for
example, when designing biomedical
instrumentation.

•  They can be realistically
presented through texture mapping
(for a model of a human lung, we
photographed a live lung during
surgery and used that texture on the
surface model).

Potential uses for such models are
broad,  encompassing researchers,
educational experts, diagnostic needs,
multimedia publishing, interactive
simulation design, surgical device
manufacturers,  and entertainment
specialists [McCracken & Spurgeon, 1991].
The construction of high-fidelity polygonal
models are an essential feature of all of
these applications.

The creation of these surface models
involves three steps: tracing contours on the
individual images, triangulating across the
stack of contours, and then rendering the
final model.  The system we present here
has evolved over ten years, and is now in its
third generation.  This most recent round of
development effort was funded through an
SBIR program grant through NSF.

2. THE SYSTEM

2.2  Tracing

To develop highly accurate models,
we have anatomists trace structures of
interest on the many sectional images in
which it appears.  While time consuming,
they are able to make the judgment calls
necessary to accurately define a structure
when the imagery is confounded by
inadequate structural definition in the
pixels.  We have used machine learning
techniques to aid the anatomist in this
tracing task.

While classical edge-detection
methods do exist; for the medical images
we are using, they have proven either
insufficient, or they require more manual
intervention than it would take to simply
trace the contour manually. User-guided
methods, such as Snakes [Kass, et.al, ‘87]
and Live Wire [Mortensen & Barrett, ‘98]
techniques, bth have problems in areas of
high curvature, though this is overcome by
various degrees of user intervention.  More
problematic, though, is the reliance of them
all on a priori assumptions about what
exactly constitutes an edge, for example the
assumption that the greatest change in pixel
intensity in an image corresponds to a
specific edge of interest in the real world.  In
high-contrast, high-resolution, noise-free
imagery, the classical & standard edge-
detection techniques can work quite well.
But in a less-then-ideal world, with
imperfect sensors and random anisotropic
noise, a priori assumptions will often break
down.

Our approach is to use neural
networks to assist an expert in the region
delineation task.  As a person begins tracing
an anatomical structure, this data is used to
train a neural network to follow the same
contour in the image which the expert is
tracking visually [Crawford-Hines &
Anderson, 1997].



Figure 2: Leaning a Boundary

Figure 2 illustrates a case in point.
This image is a detail from a CT through
two legs, where the image parameters are
tuned to highlight muscle tissue.  We thus
know that we should be seeing a mass of
muscle with a layer of skin around it.  The
strongest boundary in the image is the
exterior of the skin, but in this case the
boundary of interest is several pixels inside
that, the boundary between skin & muscle.
Looking at the Raw Image, observe that in
the upper leg, a weak boundary is
reasonably well defined, a few pixels to the
inside of the stronger external skin
boundary.  However in the area
highlighted, this weak distinction becomes
lost.  When manually tracing the
muscle/skin boundary, though, a human
can adjust for the noisy image and continue
to trace a few pixels to the inside of the skin.
In this case the true boundary is
confounded in the image by both noise and
a much stronger boundary close by.

The lower half of Figure 2 illustrates
the benefits of a learned boundary
definition for these muscles.  The upper
boundary was manually traced by an
anatomist.  Based on those characteristics, a
boundary definition was learned and then
the lower boundary was automatically
traced based on that definition.  Notice the
learned boundary tracks cleanly through
the problematic area discussed above.

The neural network used to learn the
boundary is a basic backpropagation
network with one hidden layer.  The output
layer is trained to estimate the probability of
the next point (as the contour is
incrementally traced) being on the contour
or not.  At it simplest, normalized RGB or
greyscale values in the local neighborhood
can be used as inputs; preprocessing the
image data (for example generating
Gaussians at several scales) and feeding that
to the network as inputs improves learning
speed and trace quality.  The tradeoffs
among various input representations and
analysis of the representations learned by
the hidden layers are still under study.

Triangulating

After contours are created for the
structure in question on each of the relevant
2D slices, these contours must be
triangulated to produce a final polygonal
model.  Triangulation between parallel
contours is relatively straightforward if the
contours do not bifurcate; however in
anatomical structures this happens
frequently, a prime example being the palm
of the hand splitting into the five fingers.
Although the triangulation problem
becomes more complicated in this case, we
have developed techniques to handle such
cases which produces excellent models
[Alciatore & Miranda, 1992;  Fedde, 1993;
Miranda, et al., 1990].  The input to this
procedure is to decide which contours on
one level need to be connected to which
contours on adjacent levels.  This
"connectivity" question is crucial in
producing accurate models.

The most complicated case we have
seen so far in our work on the Visible
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Figure 3:  Liver cross-section, with
hepatic veins traced

Human data is that of the hepatic vein (see
Figures 3) for which relatively subtle
decisions must be made on nearly every

level as to which contour is connected to
which.

The tracing and triangulating can
work together as shown here in Figure 4.

Manipulating & Rendering

The models are saved in the OBJ
format, a de-facto standard among 3D
modeling programs.  Thus the rendering is
independent of our system once the
polygonal mesh is created.  Over the years,
we have used Alias/Wavefront, Electric
Image, and StudioMax to animate and
render the surface models we’ve created.

A stand-alone tool, Sculpt, was
developed for manipulating the polygonal
mesh [Alciatore & Wohlers, 1996].  In
addition to repairing holes in the mesh, the
model can be deformed in several ways.
Sculpt is a general-purpose mesh
manipulation tool; it reads and writes
several formats used by the major CAD
programs in the market today.

Figure 4: tracing & triangulating



SOME RESULTS

In Summer 2000, tracers at Visible
Productions retraced the skin of the Visible
Human, using an initial implementation of
this automated tracing methodology in their
production tracing system.  The skin, largest
organ in the body, and is represented on all
1,800 images in the Visible Human
cryosection set.  The skin boundary is fairly
uniform, and incredibly tedious to
manually trace in its entirety.  One reason
for the re-tracing is because of
inconsistencies in the original boundary
tracing.  While there are no experimentally
accurate records of how much time was
taken to trace the skin boundary initially,
those who did the first skin tracing estimate
it took on the order of 3-4 weeks.  With the
automated assist, the skin was retraced in 3
days.  Additionally, these new skin
boundary contours are what is used in
Visible Productions current models, since
they are more globally consistent than the
prior set of skin boundaries.
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