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Abstract

Visible Productions, Inc., of Fort Collins, CO, produces 3-D human models that are recog-

nized as some of the most accurate models in the world. Their models currently are based on

meshes of 3-D triangles. Such meshes can be rendered as smooth surfaces by interpolating color

values across a triangular mesh, but for a number of applications the smooth surface must be

explicitly represented. Clients for Visible Productions' models have asked for surfaces de�ned

by NURBS (Non-Uniform Rational B-Splines). This project developed and implemented algo-

rithms for transforming polygonal meshes into NURBS. This requires a time-intensive, iterative

optimization process. We investigated the use of neural networks to by-pass a large part of the

optimization process.

1 Problem

Visible Productions, Ltd., of Fort Collins, CO, and other companies produce polygon-based, 3-D
models of organic structures in humans and animals. There is already a large database of excellent
3-D anatomical models existing that was created at high expense. Figure 1 shows several of the many
polygon-based models created by Visible Productions. These models are used primarily for educa-
tional uses in schools and in marketing of pharmaceuticals and medical devices. New applications
for these models require that they be represented in a compact, mathematically organized format.
These models need to be capable of easy deformation to demonstrate complicated biochemical and
physiological functions: movement of living tissue, e�ects of drugs on tissues/organs, and simulation
of anatomical structures interacting with surgical devices and diagnostic instruments.

One way to represent organic structures is as a volume of densities. This is a very intuitive
representation, but volume models require much storage space. Most applications need only the
surface of the structure, so explicitly representing the surface is much more storage-e�cient than
are volume models. Surface models can also more accurately represent organic structures. Surface
models based on polygons are very useful at this time, because many graphics boards contain
hardware for accelerating the rendering of polygons. Polygon-based surface models, although much
smaller in size than volume-based models, are still very large and hard to manage. Relatively
inexpensive software that can convert polygon models into mathematically e�cient and compact

Figure 1: Polygon-based model produced by Visible Productions, Inc.
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models in a fast and accurate manner would be of great value to any company that needs to
manipulate 3-D models.

The ready availability of accurate polygon surface models of anatomical objects would have a
great impact in various medical, educational, diagnostic, and clinical applications. As telemedicine
becomes more important and the need to transfer anatomical data sets in real time over computer
networks becomes more urgent, the requirement that the models be e�ciently realized and compactly
represented is critical. The ease of ready manipulation of the models in educational applications is
important for students and patients in understanding the geometry and the pathologies involved. In
diagnosis, the calculation of surface area and volumes (for example, the volume of brain ventricles
in the cerebral cortex) is made computationally more e�cient by a polygon-based or in general a
surface-based model representation of the organ in question.

One way to represent easily-manipulated, smooth surfaces that is common in CAD (Computer-
Aided Design) is NURBS (Non-Uniform Rational B-Splines) surfaces. A NURBS representation is a
smooth parametric model for the surface in question, while retaining a compactness of representation
which o�ers great economies in manipulation, storage, transmission, and uniformity over a wide
variety of platforms and applications.

A number of companies, including Johnson and Johnson, US Surgical, and Boston Tech, have
told Visible Productions that they would purchase their models if they were represented in NURBS.
Any company that needs to manipulate Visible Productions' models or any other polygon models
using standard CAD software, such as ProEngineer, must purchase the models as NURBS surfaces,
the standard form accepted by CAD packages.

No software exists today that quickly and accurately generates NURBS surfaces for organic
structures. Currently, only three software packages exist for generating NURBS from 3-D points.
One is called Surfacer, by Imageware, Inc., and another is called Conversion, by Alias Wavefront.
Both of these cost approximately $20,000 and are geared toward inorganic structures. They are very
ine�cient and inaccurate when working with models of organic structures, because there is a much
�ner grain of detail in organic structures than in the inorganic models for which these packages are
normally used. A third product is MedCAD by Materialise USA, which su�ers from some of the
same de�ciencies when applied to anatomical models. Visible Productions has evaluated the existing
software by attempting to create NURBS models of some of Visible Productions' models. We found
that the large computational time required to accurately approximate the polygon-based surfaces
made these tools impractical. This is veri�ed by the fact that a company named Zygote recently
spent a full year to produce a fairly accurate NURBS model of an entire human skeleton.

Visible Productions has a unique opportunity to combine the mesh-to-NURBS conversion tool
to be developed on this project with a new mesh-generation tool Visible Productions developed
with a prior NSF SBIR Phase I award and currently being re�ned through a Phase II SBIR award.
The prior project resulted in software that uses neural networks to assist skilled human tracers in
identifying boundaries in 2-D slices. Neural networks are trained to model the decisions the humans
make as they use a mouse to draw boundary lines. After a small number of boundary points are
identi�ed, the neural network is trained to also choose those points. Then, the neural network very
quickly extends the boundary trace from the point at which the human paused. When the neural
network makes a mistake, or is unable to con�dently predict the next point, the human takes over
and traces additional points. These points become additional examples on which the neural network
is trained. Publications by Crawford-Hines and Anderson [3, 4, 5] describe this work in more detail.

2 Objective

The objective of this project is to develop software that converts 3-D polygon-mesh models of organic
structures into NURBS surfaces that accurately approximate the polygon data and that accomplish
this in a practical amount of time. For Phase I, our �rst objective is to implement and demonstrate
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an algorithm for optimizing a NURBS surface for the approximation data generated by hand-tracing
the contours of regions of interest in the Visible Human data set. Our second Phase I objective is
to demonstrate a way in which neural networks can be applied to this problem to decrease the time
required to optimize the �t of a NURBS surface to the data.

3 Background

NURBS have become a standard in computer-aided design (CAD), because they have the following
properties [8]:

� NURBS provide local control, as do B-Splines. Moving one control point only a�ects the
surface shape near the control point. Designing with local control is much more intuitive than
designing with surfaces without local control, such as Bezier surfaces.

� They are invariant under scaling, translation, shear, and rotation, as are other smooth surface
representations like Bezier and B-Spline surfaces. This means that these transformations need
only be applied to the control points of the surface, not to every point on the surface. Unlike
other representations, NURBS are also invariant under perspective transformations. This saves
much time during rendering.

� NURBS surfaces can be used to exactly de�ne quadric surfaces, such as spheres and ellipsoids,
shapes that are common in organic structures. B-Splines can only approximate such surfaces
and require many more control points to do so.

An example of a NURBS surface is shown in Figure 2. The mesh of control points are shown
above the surface. Let ci;j be the mesh of control points, as i and j vary along the two dimensions
of the mesh. To de�ne a point on the NURBS surface, a weighted average of nearby control points
is calculated. The weighting is speci�ed by the B-Spline blending functions Ni;p(u), where p is the
order of the function, i indicates this is the ith blending function, and it is a function of the parameter
u that varies along one dimension of the control point mesh. With the additional weighting factor
wi;j , the equation for the point on the NURBS surface corresponding to parameter values u and v

is

p(u; v) =

mX
i=0

nX
j=0

Ni;p(u)Nj;q(v)wi;jci;j

mX
i=0

nX
j=0

Ni;p(u)Nj;q(v)wi;j

:

The B-Spline blending functions are de�ned recursively as

Ni;0(t) =

�
1; if ti � t < ti+1 and ti < ti+1;
0; otherwise,

Ni;p(t) =
t� ti

ti+p � ti
Ni;p�1(t) +

ti+p+1 � t

ti+p+1 � ti+1
Ni+1;p�1(t)

The ti's are the elements of the knot vectors. A common form for the knot vector of non-uniform
B-Splines is for the �rst p+ 1 knots to be 0 and the last p+ 1 knots to be 1. The remaining knots
must form a non-decreasing sequence of real numbers.

The tensor product expression for a point, P (u; v), on the surface of a cubic NURBS surface is

P (u; v) = UNuHN
T
vV

T
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Figure 2: Example of a NURBS surface. The NURBS control points are drawn as a mesh above the
surface. Below the surface is the dense mesh of points that would be required to render a similar
surface by using polygons.

where

U = [1; u; u2; u3];

V = [1; v; v2; v3];

Nu = 4 x 4 coe�cient matrix for u;

Nv = 4 x 4 coe�cient matrix for v;

H = fCr;cg for r = i; : : : ; i+ 3 and c = j; : : : ; j + 3;

where ui+1 < u � ui+2 and vj+1 < v � vj+2;

Cr;c = (xr;cwr;c; yr;cwr;c; zr;cwr;c; wr;c);

(xr;c; yr;c; zr;c) = control vertex at row r and column c of the control polygon, and

wr;c = the weight for the control vertex at row r and column c

The coe�cient matrices, Nu and Nv , are often calculated using the recursive, knot-insertion
algorithm of Boehm [1, 11]. Choi, et al., [2] developed an explicit matrix form for calculating the
coe�cients of the homogeneous, B-spline blending functions. They show that their procedure has
polynomial time complexity in the degree of the surface, while Boehm's method has exponential
complexity. Therefore, we use Choi, et al.'s, method, which is now described.

Let the knots for the u parameter be labeled s1; s2; : : : ; sm+4 and the knots for the v parameter
be labeled t1; t2; : : : ; tn+4, where m and n are the number of control vertices along the u and v

directions, respectively, of the control polygon. To �nd the point P (u; v) on the surface of the
NURBS, given parameter values u and v, �rst determine the pair of (si; si+1) values and (tj ; tj+1)
values that include u and v. Given these spans, the coe�cient matrices Nu and Nv are given by

Nu =

0
BBBB@

(si+1�si)
2

(si+1�si�1)(si+1�si�2)
(1� n11 � n13)

(si�si�1)
2

(si+1�si�1)(si+2�si�1)
0

�3n11 3n11 � n23 3 (si�si�1)(si+1�si)
(si+1�si�1)(si+2�si�1)

0

3n11 n33 � 3n11 3 (si+1�si)
2

(si+1�si�1)(si+2�si�1)
0

�n11 n11 � n43 � n44 �
n33
3 � n44 �

si+1�si)
2

(si+2�si)(si+2�si�1)
(si+1�si)

2

(si+2�si)(si+3�si)

1
CCCCA
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and a similar expression for Nv with tj substituted for si. The terms nkl refer to the element of Nu

in the kth row and lth column.
The automatic construction of a smooth surface that approximates a set of points is a di�cult

problem. Smoothness constraints on each NURBS surface and continuity constraints between sur-
faces confound the objective of accurately �tting the known surface points. This problem is usually
addressed by iterative schemes that incrementally reduce the di�erence between the surface and the
sample points while maintaining the desired continuity conditions. This is a very time consuming
process that must be repeated for every patch.

Much of the automatic construction work has dealt with �tting a single smooth surface to the
known points. An organic structure can have a complex topology that requires multiple smooth
surface patches to be constructed and interconnected. This problem has been dealt with in at least
two ways. Guo [9] �rst uses 3-D �-shapes [7] to �nd the topology of the surface. The method of
�-shapes works well for data sampled from serial contours. The resulting polygon-based surface
provides the initial control points for an approximating B-Spline surface, which is then re�ned by
iteratively adjusting the control points to minimize the error between the surface and the sample
points. Eck and Hoppe [6, 10] take a di�erent approach. They state that in dealing with organic
structures, multiple surface patches must be constructed to handle the complex topologies. Much
of their work focuses on re�ning the initial polygon surface to obtain a mesh of quadrilaterals. The
quadrilaterals are used to generate the initial control points for B-Spline patches and these points
are iteratively optimized.

Visible Productions has implemented novel methods for re�ning the polygon surface, both auto-
matically and via user control. The skill of their personnel in sculpting the polygon-based models is
attested to by the world-wide recognition of the superiority of their models. Therefore, in this project
we will take their polygon-based models as an excellent starting point for our NURBS approximation
methods.

4 Approach

4.1 The Initial Approximation of Data by a NURBS Surface

Once a set of cylinders have been identi�ed, each cylinder must be approximated with a NURBS
surface. To initialize the process of �tting a NURBS surface to contours of data, we must specify the
control points, weights, and knot vectors for the initial NURBS surface. We start by assigning u and
v parameter values corresponding to each data point. We base this on the convention of summing
arc lengths along the two parameter dimensions.

Let di;j be the jth data point in contour i. The distance between successive points in the v

direction along a contour is
�vdi;j = jjdi;j � di;j�1jj:

The total arc length along a contour is found by summing �vdi;j along the contour. The v parameter
value, vi;j for each data point along the contour is de�ned to be

vi;j =

8<
:
P

j

k=1
�vdj;kP

ni

k=1
�vdi;j

; j > 0;

0; j = 0;

where ni is the number of data points in contour i. This results in v values that range from 0 to 1.
The values of ui;j are assigned similarly.

Now the initial control points can be placed. Given that the NURBS surface is de�ned to have n
rows and m columns of control points, we can specify u and v values corresponding to each control
point assuming that they will be distributed evenly over the ranges of u and v. Thus, the u and v
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values for the control point in row i and column j, are

u(ci;j) =
i

n� 1
and v(ci;j) =

j

m� 1
; for i = 0; : : : ; n� 1 and j = 0; : : : ;m� 1:

Now we �nd the four data points, d1; d2; d3; and d4 and their corresponding parameter values,
(u1; v1), (u2; v2), (u3; v3), and (u4; v4), that form the vertices of the plane containing the parameters
of the control point. The coordinates of the control point are then found by linearly interpolating
the data points:

ci;j = (1� vf ) [ufd3 + (1� uf )d1] + vf [ufd4 + (1� uf )d2] ;

where

uf =
u(ci;j)� u1

u3 � u1

�
=

u(ci;j)� u2

u4 � u2

�

and

vf =
v(ci;j)� v1

v2 � v1

�
=

v(ci;j)� v3

v4 � v3

�

After the n x m grid of control points is initialized, we add duplicate control points along the
v = 0 and v = 1 ends of the grid to create a smooth join along the v direction, which is along
each contour. This specializes the NURBS surface for the types of cylinders we are dealing with in
approximating contour data. A total of four control points, two on either side of the join, are added
for each row of the control point grid.

All components of the weight matrix, W , are initialized to 1.
The knot vector in the u direction is initialized to the standard non-uniform knot vector for

third-degree NURBS curves,

[0; 0; 0; 0;
i

n� 3
for i = 1; : : : ; n� 3; 1; 1; 1]:

The knot vector in the v direction is initialized to the uniform knot vector

[
i

m
; for i = �4; : : : ;m+ 3]:

4.2 NURBS Optimization

We de�ne a NURBS surface to be optimized if the mean-squared error, E, between the data points
and the corresponding NURBS surface points is a local minimum. E depends on the control points,
C, the weights, W , the knot vectors, U and V , and the set of data points D. Let û and v̂ be
the parameter values for the point on the NURBS surface that corresponds to data point d. This
notation is also applied to other variables. Then, we can de�ne E to be

E(C;W;U; V;D) =
1

2jDj

X
d2D

jjd� P (û; v̂)jj2:

Local minima in E can be found by performing a gradient-descent procedure to optimize C and
W . (The knot vectors U and V can also be optimized in this way, but we have not yet explored this.)
First, we drop the arguments to E for clarity. The gradient of E with respect to each coordinate of
the control points, Ci, for i = 1; : : : ; 3 for the x, y, and z coordinates, is

rCi
E =

�1

jDj

X
d2D

R̂(di � Pi(û; v̂)) � Ŵ ;
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where

R̂ =
N̂u

T
ÛT V̂ N̂V

UNuWNT
v V

t

and the � operator means component-wise multiplication. Similarly, the gradient of E with respect
to the weights, W , is

rWE =
�1

jDj

X
d2D

R̂

3X
i=1

(di � Pi(û; v̂))(Ĉi � Pi(û; v̂))

Gradient descent based on the above gradients will arrive at a local minimum of E. This proce-
dure involves iterations of the following update equations:

C  C � �CrCE

W  W � �WrWE

4.3 Prediction of Control Point Placement Using a Neural Network

We have invested considerable e�ort in developing an intelligent approach to the initialization of the
control points for a NURBS surface, given the data to be approximated. As the previous �gures
show, the initial NURBS surface approximates the data well in some places, but not in others. For
those areas where the initialization is a poor �t to the data, the gradient-descent procedure requires
many iterations to improve the �t. In this section, we describe a novel approach to initialization
based on arti�cial neural networks that estimate the optimal placement of control points. Our
current development is in 2-D, but is easily extended to the full 3-D case.

Our approach is to train a neural network to predict where the next control point should be
placed, given the previous three control points and the data points that form the part of the data
set to be approximated by the three existing control points and the new one to be determined.
Examples to train the network were gathered by randomly generating control points and using them
to produce data points along the corresponding NURBS surface. 1,000 such 2-D NURBS surfaces
were produced, and 4,321 examples were extracted. Each example consists of three control points
and 30, 2-D data points. Each example also includes the desired next control point.

A common, feedforward neural network was trained using error backpropagation. The network
consisted of 66 inputs, 20 hidden units, and two output units for the two components of the predicted
control point. The set of 4,321 examples was partitioned into a training set of 3,456, a validation set
of 432, and a test set of 433, roughly an 80%, 10%, and 10% partitioning. After each pass through
the training set, or one epoch, the error on the validation set was calculated. After training for 1,000
epochs, the network's weight values at the epoch for which the validation error was the smallest were
restored to be used to predict the next control point coordinates for the test set.

5 Results and Evaluation

Figure 3a shows the contours of data points in red, the initial grid of control points in green, and
the initial NURBS surface shaded in gray. The data is from hand-traced contours of the right �bula
bone of the Visible Human data set. Figure 3b shows the resulting NURBS surface and the �nal
positions of the optimized grid points.

Figure 4 shows a graph of E versus number of iterations. The graph shows that E decreases from
an initial value of 24.5 to a �nal value of 7.5. It continues to decrease only slightly with additional
iterations.
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a. Initial b. Final

Figure 3: a) Initial NURBS surface (gray) approximating contour data (red) with initial grid of
control points (green). b) NURBS surface (gray) after 20 iterations of gradient-descent optimization.
The initial control points (red) have been moved to their �nal positions (green).
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Figure 4: The value of E versus the number of iterations.

To gain an intuitive understanding of the changes made during the optimization process, we have
drawn the �nal NURBS surface with the �nal control point grid and with the original control point
grid. This is shown in Figure 5.

A better view of the NURBS surface is obtained by rendering just the surface with no control
points or data points. This is shown in Figure 6.

A key result of the conversion to a NURBS surface is the tremendous reduction in the amount
of space required to store the speci�cation of the NURBS compared to the storage of the polygon
mesh. For the example shown here, the gzipped �le for the polygon mesh requires 955.6 KB, whereas
the gzipped �le for the NURBS surface requires 10.4 KB, a reduction in size of about 98%.

Now the results of training and using a neural network to predict control point placement are
described. Figure 7 shows a graph of the training error and the validation error versus epochs. The
best epoch was at Epoch 99. A lower validation error might have been achieved had we trained this
network for additional epochs. The �nal test error is about 0.12, which means that on average the
predicted coordinates of the next control point were only o� by 0.12. The range of the data was
from 0 to 10, so this is approximately a 10% error.

Figure 8 illustrates what this performance level means in terms of how far o� the predicted
control point placement is from the actual. This �gure shows 12 examples from the test set. None
of these were used to train the network, yet it does very well at placing the next control point. The
green lines show the sequence of control points that were used to generate the data, in red. The
fourth control point as predicted by the network is shown as the blue alternative link in the control
polygon. For these examples, and the other 400 examples in the test set, the neural network is doing
an excellent job at predicting where the next control point should be. If we now use this trained
network to specify the initial placement of the control points of a NURBS surface for approximating
the data, very little computation will be required of the optimization process because the neural
network will have already placed the control points close to their optimal locations.

When actually used to initialize a NURBS, the neural network will be required to generate not
just one new control point, but a sequence of them, enough to represent the entire set of data. To
test the feasibility of this, we used our trained network to �rst generate the fourth control point,
given the �rst three, as above. To generate the next, or �fth, control point, the second, third, and
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Figure 5: Final NURBS surface with original control points in red and the �nal control points in
green.
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Figure 6: Final NURBS surface approximating the data for the right �bula.
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Figure 7: Training RMS error (in blue) and the validation set RMS error (in green) versus the
number of epochs. The vertical red line at Epoch 99 shows where the lowest validation error was
obtained.

fourth points are input to the network. Note that only the second and third were given a priori;
the fourth one was estimated by the network. Once the network has generated the fourth, �fth, and
sixth control points, all control points input to the network were predicted by the network. This
results in the possibility of errors in the prediction having compounding e�ects on later control point
predictions. However, we �nd that this has not been the case for the tests we have performed.

Figure 9 shows ten di�erent sets of 2-D points that are to be approximated by a NURBS. The
data points, shown in red, were generated from ten di�erent NURBS curves with randomly-generated
control points. The �rst three control points, drawn in blue, were used as the inputs to the neural
network for its �rst prediction. The result is the �rst control point drawn in black. This prediction
and the previous two control points are used to predict the next control point. As shown in the
�gure, the sequence of predicted control points, in black, are close to the actual control points,
drawn in green. These predicted control points are much closer to their optimal placement than
would control points generated by interpolating the control points, the procedure described earlier
in this report.

The success of predicting control point placement in 2-D is very encouraging. This can easily
extended to the 3-D case to place the initial locations of control points on a grid. This will be a
major e�ort in the continuation of this project.

5.1 Writing NURBS Surface to IGES File and Manipulation with Stan-

dard CAD Tools

One goal of the conversion of Visible Production's polygonal models to NURBS models is to better
interface with customers. Aside from straightforward visualization purposes, some clients want the
ability to manipulate the models in a CAD package. There are many CAD package possibilities,
such as IronCAD, AutoCAD, Solid Works, CADKEY, and Solid Designer. Instead of dealing with
the native formats for each of these packages, we decided to use the IGES format.
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Figure 8: 12 examples from the test set. The control points used to generate the data are shown
in green, and the data in red. Given the �rst three control points and the data shown, the neu-
ral network predicts the location of the fourth control point to be in the location shown in blue.
Numbering these examples from the upper left and across, the �rst four examples are from the data
curve, the next two are from a di�erent one, the next three are from one curve, and the �nal three
are from one curve.
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Figure 9: Tests
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Figure 10: Alias Studio after loading a section of one of our NURBS surfaces that was stored in
IGES format.

IGES (Initial Graphics Exchange Speci�cation) is a standard format which most CAD packages
can import and is a widespread standard for CAD data exchange [12]. Another key reason for using
the IGES standard is that it is an open standard, not beholden to the proprietary interests of any
one product organization. The standard is coordinated and published by NIST and is a recognized
ANSI standard. (The current standard is up to version 5.2, though the NURBS speci�cation section
we needed has not changed substantially from the version 4.0 standard cited).

Figure 10 shows one end of the NURBS surface that we generated to approximate the �bula data
after the NURBS �le is loaded into by Alias Studio. At this point, a user may directly manipulate
the control points to modify the surface to meet their needs. This obviates the cumbersome polygon
selection processes required to manipulate polygon meshes.

6 Conclusion

The feasibility of using neural networks to initialize the process of optimizing the �t of NURBS
surfaces to 3-D data points was demonstrated by the experiments reported here. The current results,
though, are limited to 2-D data points. The next step of proving the feasibility of the approach to
a full 3-D data set remains to be taken.

15



References

[1] W. Boehm. Inserting new knots into b-spline curves. Computer-Aided Design, 12(4):199{201,
1980.

[2] B. K. Choi, W. S. Yoo, and C. S. Lee. Matrix representation for nurb curves and surfaces.
Computer-Aided Design, 22(4):235{240, May 1990.

[3] S. Crawford-Hines and C. W. Anderson. Interactive region bounding with neural nets. In
NNACIP'94|International Workshop on Neural Nets Applied to Control & Image Processing,
pages 58{61. Mexican Association of Automatic Control (AMCA) and IEEE, November 1994.

[4] S. Crawford-Hines and C. W. Anderson. Neural nets in boundary tracing tasks. In J. Principe,
L. Giles, N. Morgan, and E. Wilson, editors, Neural Networks for Signal Processing VIII,

Proceedings of the 1997 IEEE Workshop, pages 207{215, 1997.

[5] S. Crawford-Hines and C. W. Anderson. Machine learned contours to assist boundary tracing. In
Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, Tucson,
AZ, 1998.

[6] M. Eck and H. Hoppe. Automatic reconstruction of b-spline surfaces of arbitrary topological
type. In Computer Graphics (SIGGRAPH '96 Proceedings), pages 325{334. ACM, 1996.

[7] H. Edelsbrunner and E. M�ucke. Three-dimensional alpha shapes. ACM Transactions on Graph-

ics, 13(1):43{72, 1994.

[8] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips. Introduction to

Computer Graphics. Addison-Wesley Publishing Company, 1994.

[9] B. Guo. Surface reconstruction: From points to splines. Computer-Aided Design, 29(4):269{277,
1997.

[10] H. Hoppe. Surface Reconstruction from Unorganized Points. PhD thesis, Department of Com-
puter Science and Engineering, University of Washington, Seattle, WA, 1996.

[11] L. Piegl and W. Tiller. The NURBS Book. Springer-Verlag, New York, 1997.

[12] B. Smith, G. Rinaudot, K. Reed, and T. Wright. Initial graphics exchange speci�cation (IGES)
version 4.0. US Dept of Commerce, National Bureau of Standards (now NIST) NBSIR 88-3813,
June 1988.

16


