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Imagery

    • “Easy” / Straightforward to
automate:

Many existing methods and
techniques work well

    • “Difficult” / Impossible to automate:

Nothing works; requires domain expertise for adequate segmentation







Summary

   • In the middle ground between “easy” and “hard images”, boundaries in
the world are not always represented by edges in the image.  Some of
these boundaries will have patterns that can be learned.

   • Expert’s Tracing Assistant  (ETA)  developed to validate this premise.

   • ETA performs comparably on “easy” images, does better where a priori
edge / boundary definitions fail.

   • Domain:  Large, repetitive image sets



Comparisons    (7, 9)





Comparison to User-Guided,

State-of the-Art Methods

For a set of representative structures from the Visible Human imagery,
compare the performance and application of ETA to:

Intelligent Scissors  (IS)

Active Contour Models  (ACM)

Performance Measure:  compare the best boundaries these methods
produce to a Ground Truth, and judge the difference with respect to natural

intra-expert  variation.



Comparisons ???

(1) Bring their methodology to your domain...

   – who writes / runs the software ???

   – Kevin Bowyer’s posed dilemma  (in an earlier BMAC)

2) Bring your domain to their methodology...



Active Contour Models

   •  An ACM is an energy minimizing spline.

   •  Model is initialized close to a structure of interest and then iterated into
an energy minima.

   • An energy function of the boundary contour is defined so that minima
correspond to boundaries of interest in images.  Two main components:

   – The shape component: first and second derivatives of curvature

   – The image component: defined on the image plane such that local
minima correspond to edges (e.g., an inverted intensity gradient)

   • Transformed to a dynamic system for numerical solution.

   • Parameters αααα  and ββββ  weight the shape component contribution

(“tension” and “rigidity”); parameters γγγγ and κκκκ weight the damping and
inertial forces of the dynamic system.





alpha = 0.2 alpha = 1.0 alpha = 4.0 

beta = 0 beta = 2 beta = 8 

kappa = 0.1 kappa = 0.5 kappa = 2.5

The green line shows the initial bound-
ary segment, the red line shows the state
of the ACM after 30 iterations, and the

sequence of yellow lines shows the con-
tour evolution at five iteration intervals.

gamma = 0.25 gamma = 1.0 gamma = 4.0 

mu = 0.033 mu = 0.1 mu = 0.3 



Intelligent Scissors

   • In an initial preprocessing step, a local cost from every pixel to its eight
neighbors is pre-computed.

   – The cost function is a linear combination of 1st and 2nd derivative
measures across image intensity, plus possibly some local statistics.

   • The image is viewed as a weighted graph, with pixels as nodes, where each
pixel has weights on the eight graph edges to its neighbors.

   • The user manually places a starting point on the boundary of interest.

   • The system follows a minimal cost path from most recent control point to
the cursor’s current screen location.

   • As the cursor moves, this path is updated in real time and appears to be a
wire snapping around on the edges in an image.

   • Final boundary, defined on pixel centers, is smoothed with a weighted
average.



Requisite IS Control Points



The three selected
structures outlined

are the femur

(bone), the biceps

femoris (muscle),
and the skin, on
transverse image

#2186 through the
leg.



The three selected
structures outlined
are the esophagus,

the right ventricle of
the heart, and the up-

per lobe of the right
lung, on transverse

image #1432 through
the thorax.



Quantification    (6)



Quantifying Boundary Differences

I’m working with boundaries, but only have points:



Side-trips in Measurement Meadow

    • Initial measurements look at distance from one point to closest ‘other
curve’ point

    • Reviewers ask about their favorite measures, e.g., a Hausdorff distance

    • Literature is full of other ideas

    • Finally - Define a measure appropriate to the domain at hand



Quantifying Boundary Differences - 2 

The Problem: Want differences between boundaries, but only have points.

 LEFT: Two sets of points, marked with xxxx and oooo, taken from a circle of radius
10 centered at (11,11).

RIGHT: Measuring from one set of points to the polyline of the other set.



Using Distance Sets

Set of Boundary Differences (to, then from, GT) compared.

Eight excursions noted above a 1.0 threshold imply 4 user corrections needed.
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.

% of Curve within 1 pixel
of GT

90th percentile of
distance to GT

M2T ETA ACM IS M2T ETA ACM IS

B
A
S
I
C

Leg
Bone 80% 96% 91% 82% 1.25 .84 .95 1.42

Throat 95% 88% 78% 86% .87 1.06 1.52 1.07

Leg
Muscle 73% 77% 77% 70% 2.10 1.27 1.48 1.52

Ventri-
cle 89% 84% 71% 70% 1.03 1.18 1.54 2.35

BASIC
average

84% 86% 79% 77% 1.31 1.09 1.37 1.59



I
N
T

Leg Skin 78% 91% 18% 13% 1.27 .97 2.43 2.74

Arm
Skin 84% 65% 29% 27% 1.21 1.52 2.40 2.62

INT
average 81% 78% 24% 20% 1.24 1.25 2.42 2.68

H
A
R
D

Arm
Bone

75% 71% 48% 53% 1.89 1.86 3.45 3.27

Arm
Muscle 86% 91% 60% 73% 1.09 .97 2.09 1.67

Thorax
Lobe 62% 62% 37% 60% 2.39 2.00 3.41 3.69

HARD
average 74% 75% 48% 62% 1.79 1.61 2.98 2.88



Engineering    (2-8)



Sampling Neighborhoods Along An Example
Boundary
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Boundaries separate things.  C represents the center of a boundary
neighborhood.   L and R indicate immediate left and right neighbors of C.



Creating Positive and Negative Exemplars

   

4

   

2

   

3

   

5

   

1

case

–––  data  –––  –  response  –

LLLL2222 LLLL1111 CCCC RRRR 1111 RRRR 2222
on

boundary ???

1 1.0 1.0 1.0 1.0 1.0 false

2 1.0 1.0 1.0 1.0 1.0 false

3 1.0 1.0 1.0 1.0 0.5 false

4 1.0 1.0 1.0 0.5 0.5 TRUE

5 1.0 1.0 0.5 0.5 0.5 false



Interpreting the Output

case

–––  data  ––– –––  response  –––

LLLL2222 LLLL1111 CCCC RRRR 1111 RRRR 2222

boundary?

Smooth

Evalutaion

Function (SEF)

Feature

Detector (FD)

1 1.0 1.0 1.0 1.0 1.0 far left 0.1 0.1

2 1.0 1.0 1.0 1.0 1.0 far left 0.1 0.1

3 1.0 1.0 1.0 1.0 0.5 near left 0.3 0.1

4 1.0 1.0 1.0 0.5 0.5 YES 0.5 0.9

5 1.0 1.0 0.5 0.5 0.5 near right 0.7 0.1



Evolution of FD Outputs over Training
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Filtering the Inputs Effectively Adds a Layer
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pre-defined
transform weights
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raw image

   

expert-defined boundary segment

   

definition learned from expert and replicated



The neural network weights
for five hidden units (top),
three hidden units (middle)
and one hidden unit (bot-
tom) in learning the leg’s

skin boundary.



Interpreting the Neural Net’s Learning

input
representation
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FILTERING

   

DECIDING



Application in CT images

            

1
            

2

            

3



Inspiration    (1)



BMAC  –  Oct/Nov 1993

The Versalius Project

The Challenge



The  A Priori  Approach

 This approach begins with assumptions, works through mathematics, then
applies it to images.

  • assume boundaries of interest are edges in image

    • assume some definition of an edge, typically: the locally strongest
discontinuity in image intensity

    • relate definition to mathematics of intensity function: 1st derivative
extrema, 2nd derivative zero-crossing, phase shift in complex plane, ...

    • define a filter to implement the transform

    • derive criteria for filtered images to select relevant edges



The  Learn What’s Needed  Approach

    • On a (small) subset of imagery, expert defines segments of the boundary
of interest in representative areas.

    • Segments used to create a set of positive and negative exemplars.

    • From exemplars, supervised learning method learns the pattern that
characterizes this boundary of interest.    (A confidence measure, also?)

    • In new images, expert identifies a start for a boundary and the system
traces ahead automatically.    (Continues while confident.)



Learned Boundaries - Notes

    • Learned boundary can be only as good as the representative sample.

    • Expert is in the process as a monitor; provides corrections to the system
when it errs or when confidence measure is low.

    • Learning is only effective in large, repetitive image sets, where the cost of
learning (over some small imagery subset) can be recouped by
automatically processing the remainder of the imagery.

   • Note the flow is opposite of the a priori approach:

Start with imagery, define a learning method, then finally derive and
apply boundary definitions

    • Many possibilities exist for extension and learning methodologies.  Goal is
to implement one to prove the premise.  No claims of optimality implied.



Objectives

Problem: Boundary and Edge assumptions limit the range of applicability
of these a priori methods.

Proposal: Start without boundary assumptions, learn the boundary
definition to match the boundary of interest.

Method:    – Develop a framework for boundary learning and tracing.

   – Verify its adequacy on sample imagery

   – Compare it to other state of the art user-guided methods

   – Evaluate methods in comparison to tracing skills of experts

“The boundary is within X pixels of the expert Y% of the time”

   – Identify limitations of framework and avenues of future work



Funders & Helpers 



Funding

Year money aligned with research money elsewhere

1
(wrote 1st  software prototype, demo’d to

Versalius team)
RA – Reinforcement

Learning

2-4
(PhD proposal; wrote 2nd prototype to

validate basic premise)
TA – Graphics

corporate T&E

5
prototype used to secure CASI grant,

joint CSU-VP funding  (RA)

corporate T&E6
CASI results used to secure NSF-I grant,

VP funding  (contractor)

7-8
NSF-I work used to secure NSF-II grant,

VP funding  (contractor)

9 (none)
1st half - VP misc grants;

2nd half - none

10 (none)
VP contract  work for

biomedical visualizations



Helpers

  * our faculty, within and outside the department

  * conference reviewers

  * conference attendees

  * other universities  (e.g., BYU visit)   and researchers  (e.g., Terzopoulos)


