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Abstract

Reinforcement learning scales poorly when reinforcements are de-
layed. The problem of propagating information from delayed rein-
forcements to the states and actions that have an e�ect the rein-
forcement is similar to the problem of propagating information in a
discretized boundary value problem. Multigrid methods have been
shown to decrease the number of updates required to solve bound-
ary value problems. Here we extend Q-Learning by casting it as
a multigrid method and show a reduction in updates required to
reach a given error level in the Q-function for a simple, 1-d Markov
decision task.

1 INTRODUCTION

Current reinforcement learning algorithms scale poorly to large problems for a num-
ber of reasons, such as the di�culty of searching high-dimensional state spaces,
the temporal credit assignment problem due delayed reinforcement, and the struc-
tural credit assignment problem that results from parameter interactions in a func-
tion approximator. Here we focus on the temporal credit assignment problem
that is present when many state transitions occur between state-action pairs and
the external reinforcement that they a�ect. Many steps are required of iterative
reinforcement-learning algorithms to propagate the in
uence of delayed reinforce-
ment to all states and actions that have an e�ect on that reinforcement.

This situation is also present in the iterative algorithms for solving boundary value
problems, such as determining the steady-state temperature distribution in a long



uniform rod (Briggs, 1987). Many steps are needed to propagate the e�ect of the
boundary conditions to interior points of the domain over which the problem is
de�ned. Multigrid methods have been developed for the solution of boundary value
problems as a way to decrease the number of iterations needed in a relaxation ap-
proach (McCormick, 1992; R�ude, 1993). The problem is transformed to equivalent
problems de�ned over the domain discretized at di�erent resolutions.

Here we apply the multigrid approach to the Q-Learning algorithm (Watkins, 1989).
In the remaining sections, we recast Q-Learning as a multigrid method and describe
results of applying the combined approach on a simple Markov decision task. The
results show that the multigrid approach reduces by half the number of updates
required to reach a particular error level.

2 MULTIGRID-Q

The primary step in extending Q-Learning to multiple levels of resolution is to
de�ne how to transform the Q-Learning problem from one level to another. Let us
start with an expression of Watkin's one-step Q-Learning algorithm:

Qk+1 = Qk + �

�
R(xk; ak) + 
max

a02A

Qk(yk; a
0)� Qk(xk; ak)

�
;

where Qk(xk; ak) is the value of the Q function at the kth iteration for action ak
taken in state xk, � is a constant, R(xk; ak) is the external reinforcement received
for action ak taken in state xk, 
 is a constant discount factor, and yk is the state
that results from taking action ak in state xk. There are a �nite set of states and
actions, S and A, respectively, i.e., xk 2 S, yk 2 S, and ak 2 A.

To de�ne this algorithm for di�erent levels of resolution, we must rede�ne R, 
, and
the set of actions A, and de�ne a procedure for modifying the Q values converged on
at one level to Q values for another level. Let � represent the current level, typically
� is the spacing of the grid, relative to the �nest resolution. Using superscripts to
indicate the current level, we can rewrite the Q-Learning algorithm as:

Q�

k+1 = Q�

k + �

�
R�(xk; ak) + 
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a02A�

Q�
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0)� Q�

k(xk; ak)

�
;

where ak 2 A� and xk; yk 2 S� .

An early form of the multigrid algorithm followed a coarse-to-�ne schedule of re-
laxation at the various levels. To shift to the next �ner level, the coarse solution
is interpolated to obtain values at grid points halfway between points whose values
were modi�ed at the coarser level. The coarse level solution and its interpolation
is taken as a starting point for the solution of the problem at the �ner level. This
solution-interpolation process continues until the problem is solved at the �nest
level of resolution. Other schedules for moving among the levels have been tried.
Another variation, called adaptive multigrid, is to develop di�erent resolutions for
di�erent parts of the grid.

The notion of multilevels of resolution is not new to the reinforcement learning liter-
ature. Dayan and Hinton (1993) developed a hierarchical approach to reinforcement
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Figure 1: The State Space at di�erent resolutions.

learning and Moore (1991) adaptively increases the resolution of the state space near
experience trajectories. However, the only prior explicit contact with the multigrid
literature is the work of Chow and Tsitsiklis (1988) who show that a multigrid im-
plementation of the successive approximation algorithm for dynamic programming
results in a near optimal computational complexity.

3 METHOD

To study empirically the viability of these multigrid methods for Q-learning, we
ran a series of progressively more detailed simulations for a 1-dimensional random
walk. The temporal di�erence (TD) methods of learning the Q-function converge
to a stable set of values over a series of random walks. With this known stable set
in hand, we studied the speed of convergence to this stable state from a variety of
di�erent initial conditions, expressed as known error function added to that �nal,
stable state.

The linear state space of these simulations has 16 non-absorbing states, and end
states o� to both the left and right. The state space is diagrammed in Figure 1. If
the random walk ends on the right-side in state R, there is a reward of 1; if it ends
on the left-side in state A, there is no reward.

The Q function to be learned represents a discounted value of the best possible
future reward for a given move. We used a discount factor of .9 throughout these
simulations. Thus, for example, in state P, by moving right the best possible future
is to move to state R in one more step; this implies Q(state � P;move � right) is
.9, which is the reward of 1 discounted by .9 for the one further right required to
reach that reward. It should be clear that the �nal Q values for right moves form a
series of powers of .9: Q(state-Q;move-right) = 1, Q(state-P;move-right) = 0:9,
Q(state-O;move-right) = 0:81, etc.

Temporal di�erence methods provide a set of approximations to the Q function
as random walks are made through the state space. A trajectory is often used in
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Figure 2: Creating a 2-period noisy initial distribution

the same sense as random walk in our model: it implies starting at some random
initial state, and taking a series of left and right moves until the walk ends at either
�nal state A or R. The probabilities of moving left or right from a given state are
determined by exponentially normalizing the Q values for the corresponding left or
right move. A run is a series of walks or trajectories which starts with some initially
prede�ned set of Q values, and continues until the Q function iterations converge to
to within some speci�ed error tolerance. For this 16-state model, a run comprised of
50 trajectories will visit approximately 1000 states. Each visit to a new state implies
one TD update to the approximate Q function. In all the following simulations, we
measured runs by the number of updates involved, since this is both proportional
to the computational complexity of the approximation method, and representative
of amount of \experience" acquired through the series of trajectories through the
state space.

In drawing analogies to the previous multigrid work, some early motivating exam-
ples demonstrated how iterated approximate solutions converged at di�erent speeds
depending on the frequency distribution of the noise superimposed on the stable
solution. To study this e�ect, we created various initial distributions, each with
a characteristic error frequency added to the stable solution. Figure 2 illustrates
a sinusoidal noise added onto a geometric stable solution, the solution which is
characteristic of the Q functions for these 1-D random walks. Each of the peaks
is equally distant from the solution curve when measured vertically, though this
may not be visually obvious due to the increasing slope of the solution curve. We
denote this particular example as 2-period noise. Through the course of this work,
we studied sinusoidal and square-wave noise of 1-period, 2-periods, 4-periods, and
8-periods, as well as a constant-bias added to all the states. All the noise functions
were calculated such that the sums of their absolute error over all 16 states were
equal.

In implementing a multigrid perspective on this random walk, conceptually we just
took larger steps on the walk, as illustrated in Figure 1. A step-size coarseness of 4
in our 16-state model is the equivalent of walking in a 4-state model consisting of
only states BFJN. To converge to the appropriate Q values in this reduced state
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Figure 3: Errors in Q over 33 multigrid approximation runs

model, the e�ective discount factor was raised to the fourth power, since each large
step right is equivalent to four individually discounted single steps right. Similarly,
a step-size coarseness of 2 is equivalent to walking only the states BDFHJLNP
and squaring the discount factor. This approach to restructuring the state space
is in direct analogy to the multigrid approach to solving di�erential equations at
di�erent mesh sizes across the desired solution space.

Our multigrid approach to approximating Q in this 16-state space proceeds in this
manner:

1. randomly walk with a step size of 4 until the Q values for the 4 states
BFJN have roughly converged;

2. linearly interpolate the middle states DHLP from BFJN;

3. randomly walk with a step size of 2 until the Q values for the 8 states
BDFHJLNP have roughly converged;

4. linearly interpolate the middle states CEGIKMOQ;

5. continue walking at a step size of 1 until convergence criteria is met.

This would be called a 4/2/1 schedule for the multigrid simulation. Figure 3 displays
in composite the total absolute error over all Q values for 33 runs of a 4/2/1 schedule.
The simulations ran for 100 updates at a step size of 4, then for 200 updates at a
step size of 2, then until convergence at a step size of 1. The interpolation points
at 100 and 300 updates are obvious in the �gure.

The standard single-step TD approximation method can be improved by �nding
the optimum learning rate � for the basic TD method, and by implementing the
TD(�) approximation method. On top of both of these, the multigrid approach can
be tuned by selection of the parameters for how many updates are performed at
a given step size. As an example of visually tuning the multigrid strategy in this
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Figure 4: Error by update for varying Initial Error frequencies

way, looking back on Figure 3 it is apparent that there is minimal improvement in
the latter size 4 steps and size 2 steps, therefore in both cases the transition to the
smaller step size should have been made earlier, bringing the overall average curve
down faster.

4 RESULTS

Our initial results showed an e�ect noted in previous multigridwork. Figure 4 shows
the decrease in error as the Q function is \learned" more closely over the series of
updates for four cases. These four cases represent di�ering initial distributions,
where a 1-period, 2-period, 4-period, and 8-period square wave error was added to
the Q solution. The Q function is learned progressively quicker, evidenced by a
steeper decrease in error, as the initial Q values have progressively higher frequency
error components to them. This is a key observation motivatingmultigrid methods,
since a coarser view of the state space makes the error frequency components appear
higher, and thus \learned" more e�ciently.

This simple �rst result is confounded by other optimizations which can be made to
the basic single step approach. The standard single-step TD approximationmethod
can be improved by �nding the optimum learning rate � for the basic TD method,
and by implementing the TD(�) approximation method. The parameters � and �

will vary depending on the frequency of the error component.

After much exploratory work with the various parameters available to us, we aver-
aged a series of 33 runs at the best possible � and � values for the \constant bias"
and the \2-period error" initial distributions. The convergence speed was quanti�ed
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by estimating the area under the error decay curve. With these best settings, we
made a set of multigrid runs for comparison against the best of what the standard
TD methods could do. The interpolation points were visually placed as previously
discussed. The \2-period error" initial distribution showed a dramatic multigrid
improvement of 40%; the \constant bias" initial distribution still showed a multi-
grid improvement, though of only a more modest 15%. The 33-run average curves
are shown in Figure 5.

With these results in mind, we theorized that in a larger state space, which is harder
to learn overall, the multigrid methods would have the most 
exibility for improved
learning. So a con�rmatory simulation was made in a 32-state space for a series
of runs on an \4-period error" initial distribution and a near-optimal single-step
� and �. The multigrid method with an 8/4/2/1 schedule outperformed the best
single-step TD method by 50%.

5 DISCUSSION

The modi�cation of Q-Learning to a multigrid form that followed a coarse-to-�ne
schedule considerably reduced the number of updates required to reach a given error
level. However, the formulation of Multigrid-Q described here is based on a number
of assumptions that somewhat limit its practicality.

The abstraction of the state space to multiple levels of resolution assumes knowledge
of the topology of the state space. We do not assume knowledge of the state
transition probabilities, since the algorithm is based on the stochastic approximation
form of Q-Value Iteration Singh (1993). We also assumed we could rede�ne the
action-dependent, state transition probabilities for various levels of resolution. In



a real environment, observables are typically sensed at �xed intervals of time. To
use this experience at multiple levels of resolution, the observed trajectories could
be cached and reduced to the resolution required at each level.

Extensions of the basic Multigrid-Q algorithm presented here include the following.
Variations of the coarse-to-�ne schedule, such as the V and W-cycles used in solving
boundary-value problems (Briggs, 1987), might result in further reductions of up-
dates. An adaptive scheme could be developed whereby the resolution is varied for
di�erent states. This adaptive multigrid approach is strongly related to the variable
resolution methods studied by Moore (Moore, 1991; Moore and Atkeson, tted).
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